Question

Let $$f\left( x \right) = - 1 + \left| {x - 1} \right|,\, - 1 \leqslant x \leqslant 3$$        and $$ \leqslant g\left( x \right) = 2 - \left| {x + 1} \right|,\, - 2 \leqslant x \leqslant 2,$$        then $$\left( {fog} \right)\left( x \right)$$   is equal to :

A. \[\left\{ \begin{array}{l} x + 1\,\,\,\,\, - 2 \le x \le 0\\ x - 1\,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]
B. \[\left\{ \begin{array}{l} x - 1\,\,\,\,\, - 2 \le x \le 0\\ x + 1\,\,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]
C. \[\left\{ \begin{array}{l} - 1 - x\,\,\,\,\, - 2 \le x \le 0\\ \,\,\,x - 1\,\,\,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]
D. none of these  
Answer :   none of these
Solution :
\[\begin{array}{l} \left( {fog} \right)\left( x \right) = \left\{ \begin{array}{l} f\left( {x + 3} \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 \le x + 3 \le 2\\ f\left( { - x + 1} \right),\,\,\,\, - 1 \le - x + 2 \le 2 \end{array} \right.\\ = \left\{ \begin{array}{l} f\left( {x + 3} \right),\,\,\,\,\,\,\,\,\,\,\,\,1 \le x + 3 \le 2\\ f\left( { - x + 1} \right),\,\,\, - 1 \le - x + 1 \le 1\\ f\left( { - x + 1} \right),\,\,\,\,\,\,\,\,1 \le - x + 1 \le 2 \end{array} \right.\\ = \left\{ \begin{array}{l} \,\,\,\,\,x + 1,\,\,\,\,\, - 2 \le x \le - 1\\ - x - 1,\,\,\,\,\, - 1 \le x \le 0\\ \,\,\,\,\,x - 1,\,\,\,\,\,\,\,\,\,\,\,0 \le x \le 2 \end{array} \right. \end{array}\]

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section