Question

Let \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{1 - {{\sin }^3}x}}{{3\,{{\cos }^2}x}},\,\,\,\,\,\,\,x < \frac{\pi }{2}\\ \,\,\,\,\,\,\,p,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{\pi }{2}\\ \frac{{q\left( {1 - \sin \,x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}},\,\,x > \frac{\pi }{2} \end{array} \right.\]
If $$f\left( x \right)$$  is continuous at $$x = \frac{\pi }{2},\,\left( {p,\,q} \right) = ?$$

A. $$\left( {1,\,4} \right)$$
B. $$\left( {\frac{1}{2},\,2} \right)$$
C. $$\left( {\frac{1}{2},\,4} \right)$$  
D. none of these
Answer :   $$\left( {\frac{1}{2},\,4} \right)$$
Solution :
$$\eqalign{ & f\left[ {{{\left( {\frac{\pi }{2}} \right)}^ - }} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{1 - {{\sin }^3}\left[ {\left( {\frac{\pi }{2}} \right) - h} \right]}}{{3\,{{\cos }^2}\left[ {\left( {\frac{\pi }{2}} \right) - h} \right]}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{1 - {{\cos }^3}h}}{{3\,{{\sin }^2}h}} \cr & = \frac{1}{2} \cr & f\left[ {{{\left( {\frac{\pi }{2}} \right)}^ + }} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{q\left[ {1 - \sin \left\{ {\left( {\frac{\pi }{2}} \right) + h} \right\}} \right]}}{{{{\left[ {\pi - 2\left\{ {\left( {\frac{\pi }{2}} \right) + h} \right\}} \right]}^2}}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{q\left( {1 - \cos \,h} \right)}}{{4\,{h^2}}} \cr & = \frac{q}{8} \cr & \therefore \,p = \frac{1}{2} = \frac{q}{8} \cr & \Rightarrow p = \frac{1}{2},\,\,q = 4 \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section