Question

Let $$f:R \to R$$   be such that $${\text{ }}f\left( 1 \right) = 3$$   and $${\text{ }}f'\left( 1 \right) = 6.$$   Then $$\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}}$$     equals :

A. $$1$$
B. $${e^{\frac{1}{2}}}$$
C. $${e^2}$$  
D. $${e^3}$$
Answer :   $${e^2}$$
Solution :
$$\eqalign{ & {\text{Given that }}f:R \to R{\text{ be such that }}f\left( 1 \right) = 3{\text{ and }}f'\left( 1 \right) = 6 \cr & {\text{Then }}\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}} \cr & = {e^{\mathop {\lim }\limits_{x \to 0} \frac{1}{x}\left[ {\log \,f\left( {1 + x} \right) - \log \,f\left( 1 \right)} \right]}} \cr & = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{{f\left( {1 + x} \right)}}f'\left( {1 + x} \right)}}{1}}} \cr & = {e^{\frac{{f'\left( 1 \right)}}{{f\left( 1 \right)}}}} \cr & = {e^{\frac{6}{3}}} \cr & = {e^2} \cr} $$
[ Using L Hospital rule ]

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section