Question

Let $$f:R \to R$$   be a function such that $$f\left( x \right) = ax + 3\sin \,x + 4\cos \,x.$$       Then $$f\left( x \right)$$  is invertible if :

A. $$a\, \in \,\left( { - 5,\,5} \right)$$  
B. $$a\, \in \,\left( { - \infty ,\, - 5} \right)$$
C. $$a\, \in \,\left( {5,\, + \infty } \right)$$
D. none of these
Answer :   $$a\, \in \,\left( { - 5,\,5} \right)$$
Solution :
$$\eqalign{ & f'\left( x \right) = a + 3\cos \,x - 4\sin \,x \cr & = a + 5\cos \left( {x + \alpha } \right),{\text{ where }}\cos \,\alpha = \frac{3}{5} \cr & \therefore a - 5 \leqslant f'\left( x \right) \leqslant a + 5 \cr} $$
$$\therefore f'\left( x \right) > 0{\text{ if }}a + 5 > 0{\text{ i}}{\text{.e}}{\text{., }}a > - 5$$        and $$f'\left( x \right) < 0{\text{ if }}a - 5 <0{\text{ i}}{\text{.e}}{\text{., }}a < 5$$
Hence, $$f\left( x \right)$$  is strictly monotonic if $$a\, \in \,\left( { - 5,\,5} \right)$$   and hence it will be invertible.

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section