Question

Let $$f:R \to R$$   be a function defined as \[f\left( x \right) = \left\{ \begin{array}{l} 5,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\,\,x \le 1\\ a + bx,\,\,{\rm{if}}\,\,\,\,{\rm{1}} < x < 3\\ b + 5x,\,\,{\rm{if}}\,\,\,\,3 \le x < 5\\ 30,\,\,\,\,\,\,\,\,\,\,{\rm{if}}\,\,\,\,x \ge 5\,\, \end{array} \right.\]
then, $$f$$ is-

A. continuous if $$a=5$$   and $$b=5$$
B. continuous if $$a =-5$$   and $$b= 10$$
C. continuous if $$a=0$$   and $$b=5$$
D. not continuous for any values of $$a$$ and $$b$$  
Answer :   not continuous for any values of $$a$$ and $$b$$
Solution :
Let $$f\left( x \right)$$  is continuous at $$x = 1,$$   then
$$\eqalign{ & f\left( {{1^ - }} \right) = f\left( a \right) = f\left( {{1^ + }} \right) \cr & \Rightarrow 5 = a + b......(a) \cr} $$
Let $$f\left( x \right)$$  is continuous at $$x = 3,$$   then
$$\eqalign{ & f\left( {{3^ - }} \right) = f\left( c \right) = f\left( {{3^ + }} \right) \cr & \Rightarrow a + 3b = b + 15 \cr & \Rightarrow a + 2b = 15......(b) \cr} $$
Solving (a) & (b) we get $$b= 10, \,\,a =-5$$
Now $$f\left( x \right)$$  is continuous at $$x = 5,$$   then
$$\eqalign{ & f\left( {{5^ - }} \right) = f\left( 5 \right) = f\left( {{5^ + }} \right) \cr & \Rightarrow b + 25 = 30 \cr} $$
Which is not satisfied by $$a =-5$$   and $$b= 10.$$
Hence, $$f\left( x \right)$$  is not continuous for any values of $$a$$ and $$b$$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section