Question

Let $$f:{\bf{R}} \to {\bf{R}}$$   be a positive increasing function with $$\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( {3x} \right)}}{{f\left( x \right)}} = 1.$$    Then $$\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( {2x} \right)}}{{f\left( x \right)}} = ?$$

A. $$\frac{2}{3}$$
B. $$\frac{3}{2}$$
C. $$3$$
D. $$1$$  
Answer :   $$1$$
Solution :
$$f\left( x \right)$$   is a positive increasing function.
$$\eqalign{ & \therefore 0 < f\left( x \right) < f\left( {2x} \right) < f\left( {3x} \right) \cr & \Rightarrow 0 < 1 < \frac{{f\left( {2x} \right)}}{{f\left( x \right)}} < \frac{{f\left( {3x} \right)}}{{f\left( x \right)}} \cr & \Rightarrow \mathop {\lim }\limits_{x \to \infty } \,1 \leqslant \mathop {\lim }\limits_{x \to \infty } \frac{{f\left( {2x} \right)}}{{f\left( x \right)}} \leqslant \mathop {\lim }\limits_{x \to \infty } \frac{{f\left( {3x} \right)}}{{f\left( x \right)}} \cr} $$
By Sandwich Theorem.
$$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } \frac{{f\left( {2x} \right)}}{{f\left( x \right)}} = 1$$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section