Question

Let $$f$$ be a positive function. If $${I_1} = \int_{1 - k}^k {xf\left\{ {x\left( {1 - x} \right)} \right\}dx,\,{I_2}} = \int_{1 - k}^k {f\left\{ {x\left( {1 - x} \right)} \right\}dx,} $$           where $$2k - 1 > 0,$$   then $$\frac{{{I_1}}}{{{I_2}}}$$  is :

A. 2
B. $$k$$
C. $$\frac{1}{2}$$  
D. 1
Answer :   $$\frac{1}{2}$$
Solution :
$$\eqalign{ & {I_1} = \int_{1 - k}^k {xf\left\{ {x\left( {1 - x} \right)} \right\}dx} \cr & {\text{Put }}x = 1 - z \cr & {I_1} = \int_k^{1 - k} {\left( {1 - z} \right)f\left\{ {\left( {1 - z} \right)z} \right\}d\left( {1 - z} \right)} \cr & \,\,\,\,\, = \int_{1 - k}^k {f\left\{ {z\left( {1 - z} \right)} \right\}dz} - \int_{1 - k}^k {zf\left\{ {z\left( {1 - z} \right)} \right\}dz} \cr & \,\,\,\,\, = {I_2} - {I_1} \cr & \therefore 2{I_1} = {I_2} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section