Question

Let $$f$$ be a non-negative function defined on the interval [0, 1]. If $$\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}dt} = \int\limits_0^x {f\left( t \right)dx,\,\,\,0 \leqslant x \leqslant 1,} } $$         and $$f\left( 0 \right) = 0,$$   then-

A. $$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) > \frac{1}{3}$$
B. $$f\left( {\frac{1}{2}} \right) > \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) > \frac{1}{3}$$
C. $$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$  
D. $$f\left( {\frac{1}{2}} \right) > \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$
Answer :   $$f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$
Solution :
Given that $$f$$ is a non negative function defined on $$\left[ {0,\,1} \right]$$  and $$\int\limits_0^x {\sqrt {1 - {{\left( {f'\left( t \right)} \right)}^2}} } dt = \int\limits_0^x {f\left( t \right)dt,\,\,\,\,0 \leqslant x \leqslant 1} $$
Differentiating both sides with respect to $$x,$$ we get
$$\eqalign{ & \sqrt {1 - {{\left[ {f'\left( x \right)} \right]}^2}} = f\left( x \right) \cr & \Rightarrow 1 - {\left[ {f'\left( x \right)} \right]^2} = {\left[ {f\left( x \right)} \right]^2} \cr & \Rightarrow {\left[ {f'\left( x \right)} \right]^2} = 1 - {\left[ {f\left( x \right)} \right]^2} \cr & \Rightarrow \frac{d}{{dx}}f\left( x \right) = \pm \sqrt {1 - {{\left[ {f\left( x \right)} \right]}^2}} \cr & \Rightarrow \pm \frac{{d\,f\left( x \right)}}{{\sqrt {1 - {{\left[ {f\left( x \right)} \right]}^2}} }} = dx \cr} $$
Integrating both sides with respect to $$x,$$ we get
$$ \pm \frac{{d\,f\left( x \right)}}{{\sqrt {1 - {{\left[ {f\left( x \right)} \right]}^2}} }} = \int {dx} \,\,\, \Rightarrow \pm {\sin ^{ - 1}}f\left( x \right) = x + C$$
$$\because $$ Given that $$f\left( 0 \right) = 0\,\,\, \Rightarrow C = 0$$
Hence $$f\left( x \right) = \pm \sin \,x$$
But as $$f\left( x \right)$$  is a non negative function on $$\left[ {0,\,1} \right]$$
$$\therefore f\left( x \right) = \sin \,x$$
Now $$\sin \,x < x,\,\forall \,x > 0$$
$$\therefore \,f\left( {\frac{1}{2}} \right) < \frac{1}{2}{\text{ and }}f\left( {\frac{1}{3}} \right) < \frac{1}{3}$$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section