Question

Let $$f$$ be a function which is continuous and differentiable for all real $$x.$$ If $$f\left( 2 \right) = - 4$$   and $$f'\left( x \right) \geqslant 6$$   for all $$x\, \in \left[ {2,\,4} \right],$$   then,

A. $$f\left( 4 \right) < 8$$
B. $$f\left( 4 \right) \geqslant 8$$  
C. $$f\left( 4 \right) \geqslant 12$$
D. none of these
Answer :   $$f\left( 4 \right) \geqslant 8$$
Solution :
By mean value theorem, there exists a real number $$c\, \in \left( {2,\,4} \right)$$   such that
$$\eqalign{ & f'\left( c \right) = \frac{{f\left( 4 \right) - f\left( 2 \right)}}{{4 - 2}}\,\,\, \Rightarrow f'\left( c \right) = \frac{{f\left( 4 \right) + 4}}{2} \cr & {\text{Since, }}f'\left( c \right) \geqslant 6,\,\forall \,x\, \in \left[ {2,\,4} \right] \cr & \therefore \,f'\left( c \right) \geqslant 6 \cr & \Rightarrow \frac{{f\left( 4 \right) + 4}}{2} \geqslant 6 \cr & \Rightarrow f\left( 4 \right) + 4 \geqslant 12 \cr & \Rightarrow f\left( 4 \right) \geqslant 8 \cr} $$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section