Let $$f:\left[ { - 1,\,2} \right] \to \left[ {0,\,\infty } \right)$$ be a continuous function such that $$f\left( x \right) = f\left( {1 - x} \right)$$ for all $$x\, \in \,\left[ { - 1,\,2} \right]$$
Let $${R_1} = \int\limits_{ - 1}^2 {x\,f\left( x \right)dx,} $$ and $${R_2}$$ be the area of the region bounded by $$y = f\left( x \right),\,\,x = - 1,\,\,x = 2$$ and the $$x$$-axis.
Then-