Question

Let $$f:\left[ { - 1,\,2} \right] \to \left[ {0,\,\infty } \right)$$     be a continuous function such that $$f\left( x \right) = f\left( {1 - x} \right)$$    for all $$x\, \in \,\left[ { - 1,\,2} \right]$$
Let $${R_1} = \int\limits_{ - 1}^2 {x\,f\left( x \right)dx,} $$      and $${R_2}$$  be the area of the region bounded by $$y = f\left( x \right),\,\,x = - 1,\,\,x = 2$$      and the $$x$$-axis.
Then-

A. $${R_1} = 2{R_2}$$
B. $${R_1} = 3{R_2}$$
C. $$2{R_1} = {R_2}$$  
D. $$3{R_1} = {R_2}$$
Answer :   $$2{R_1} = {R_2}$$
Solution :
We have
$$\eqalign{ & {R_1} = \int_{ - 1}^2 {x\,f\left( x \right)} dx = \int_{ - 1}^2 {\left( {1 - x} \right)f\left( {1 - x} \right)dx} \cr & \left[ {{\text{Using }}\int_a^b {f\left( x \right)dx = \int_a^b {f\left( {a + b - x} \right)dx} } } \right] \cr & \Rightarrow {R_1} = \int_{ - 1}^2 {\left( {1 - x} \right)f\left( x \right)dx} \cr & \left[ {{\text{As}}\,{\text{ }}f\left( x \right) = f\left( {1 - x} \right){\text{ on }}\left[ { - 1,\,2} \right]} \right] \cr & \therefore {R_1} + {R_2} = \int_{ - 1}^2 {x\,f\left( x \right)dx + } \int_{ - 1}^2 {\left( {1 - x} \right)f\left( x \right)dx} \cr & \Rightarrow 2{R_1} = \int_{ - 1}^2 {f\left( x \right)dx = {R_2}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section