Question

Let $$f\left( 1 \right) = 1$$   and $$f\left( n \right) = 2\sum\limits_{r = 1}^{n - 1} {f\left( r \right).} $$    Then $$\sum\limits_{n = 1}^m {f\left( n \right)} $$   is equal to :

A. $${3^m} - 1$$
B. $${3^{m}}$$
C. $${3^{m - 1}}$$  
D. none of these
Answer :   $${3^{m - 1}}$$
Solution :
$$\eqalign{ & f\left( 1 \right) = 1 \cr & f\left( 2 \right) = 2\sum\limits_{x = 1}^1 {f\left( x \right)} \cr & = 2f\left( 1 \right) = 2 \times 1 = 2 \cr & f\left( 3 \right) = 2\sum\limits_{x = 1}^2 {f\left( x \right)} \cr & = 2f\left( 1 \right) + 2f\left( 2 \right) = 2 \times 1 + 2 \times 2 = 6 \cr & f\left( 4 \right) = 2\sum\limits_{x = 1}^3 {f\left( x \right)} \cr & = 2\left[ {f\left( 1 \right) + f\left( 2 \right) + f\left( 3 \right)} \right] \cr & = 2\left[ {1 + 2 + 6} \right] = 18 \cr & {\text{The sequence is}} = 1 + 2 + 6 + 18 + ..... \cr & \sum\limits_{n = 1}^m {f\left( n \right)} = 1 + 2\left( {1 + 3 + 9 + .....} \right) \cr & \sum\limits_{n = 1}^m {f\left( n \right)} = 1 + 2\frac{{\left( 1 \right)\left( {{3^{m - 1}} - 1} \right)}}{2} \cr & \sum\limits_{n = 1}^m {f\left( n \right)} = {3^{m - 1}} \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section