Question

Let complex numbers $$\alpha \,\,{\text{and }}\frac{1}{{\overline \alpha }}$$   lie on circles $${\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} = {r^2}\,\,{\text{and}}\,\,\,{\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} = 4{r^2}$$            respectively. If $${z_0} = {x_0} + i{y_0}$$   satisfies the equation $$2{\left| {{z_0}} \right|^2} = {r^2} + 2,{\text{then}}\,\left| \alpha \right| = $$

A. $$\frac{1}{{\sqrt 2 }}$$
B. $$\frac{1}{2}$$
C. $$\frac{1}{{\sqrt 7 }}$$  
D. $$\frac{1}{3}$$
Answer :   $$\frac{1}{{\sqrt 7 }}$$
Solution :
As $$\alpha $$ lies on the circle $${\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} = {r^2}$$
$$\therefore \,\,{\left| {\alpha - {z_0}} \right|^2} = {r^2}$$
$$\eqalign{ & \Rightarrow \,\,\left( {\alpha - {z_0}} \right)\left( {\overline a - {{\overline z }_0}} \right) = {r^2} \cr & \Rightarrow \,\,\alpha \overline \alpha - \alpha {\overline z _0} - \overline \alpha {z_0} + {z_0}{\overline z _0} = {r^2} \cr & \Rightarrow \,\,{\left| \alpha \right|^2} + {\left| {{z_0}} \right|^2} - \alpha {\overline z _0} - \overline \alpha {z_0} = {r^2}\,\,\,\,\,\,\,\,\,.....\left( {\text{i}} \right) \cr} $$
Also $$\frac{1}{{\overline \alpha }}$$ lies on the circle $${\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} = 4{r^2}$$
$$\eqalign{ & \therefore \,\,{\left| {\frac{1}{{\overline \alpha }} - {z_0}} \right|^2} = 4{r^2} \cr & \Rightarrow \,\,\left( {\frac{1}{{\overline \alpha }} - {z_0}} \right)\left( {\frac{1}{\alpha } - {{\overline z }_0}} \right) = 4{r^2} \cr & \Rightarrow \,\,\frac{1}{{\alpha \overline \alpha }} - \frac{{{z_0}}}{\alpha } - \frac{{{{\overline z }_0}}}{{\overline \alpha }} + {z_0}{\overline z _0} = 4{r^2} \cr & \Rightarrow \,\,\frac{1}{{{{\left| \alpha \right|}^2}}} - \frac{{{z_0}\overline \alpha }}{{{{\left| \alpha \right|}^2}}} - \frac{{{{\overline z }_0}\alpha }}{{{{\left| \alpha \right|}^2}}} + {\left| {{z_0}} \right|^2} = 4{r^2} \cr & \Rightarrow \,\,1 + {\left| \alpha \right|^2}{\left| {{z_0}} \right|^2} - {z_0}\overline \alpha - {\overline z _0}\alpha = 4{r^2}{\left| \alpha \right|^2}\,\,\,\,\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Subtracting $${\text{e}}{{\text{q}}^n}$$ (i) from (i) we get
$$\eqalign{ & 1 - {\left| \alpha \right|^2} + {\left| {{z_0}} \right|^2}\left( {{{\left| \alpha \right|}^2} - 1} \right) = {r^2}\left( {4{{\left| \alpha \right|}^2} - 1} \right) \cr & {\text{or }}\,\,\left( {{{\left| \alpha \right|}^2} - 1} \right)\left( {{{\left| {{z_0}} \right|}^2} - 1} \right) = {r^2}\left( {4{{\left| \alpha \right|}^2} - 1} \right) \cr & {\text{Using }}{\left| {{z_0}} \right|^2} = \frac{{{r^2} + 2}}{2}{\text{ we get}} \cr & \left( {{{\left| \alpha \right|}^2} - 1} \right)\frac{{{r^2}}}{r} = {r^2}\left( {4{{\left| \alpha \right|}^2} - 1} \right) \cr & \Rightarrow \,\,{\left| \alpha \right|^2} - 1 = 8{\left| \alpha \right|^2} - 2 \cr & \Rightarrow \,\,\left| \alpha \right| = \frac{1}{{\sqrt 7 }} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section