Question

Let $$C$$ be the circle with centre $$\left( {0,\,0} \right)$$  and radius $$3$$ units. The equation of the locus of the mid points of the chords of the circle $$C$$ that subtend an angle of $$\frac{{2\pi }}{3}$$ at its center is-

A. $${x^2} + {y^2} = \frac{3}{2}$$
B. $${x^2} + {y^2} = 1$$
C. $${x^2} + {y^2} = \frac{{27}}{4}$$
D. $${x^2} + {y^2} = \frac{9}{4}$$  
Answer :   $${x^2} + {y^2} = \frac{9}{4}$$
Solution :
Let $$M\left( {h,\,k} \right)$$  be the mid point of chord $$AB$$  where
$$\angle AOB = \frac{{2\pi }}{3}$$
Circle mcq solution image
$$\eqalign{ & \therefore \angle AOM = \frac{\pi }{3},{\text{ Also }}OM = 3\,\cos \frac{\pi }{3} = \frac{3}{2} \cr & \Rightarrow \sqrt {{h^2} + {k^2}} = \frac{3}{2} \Rightarrow {h^2} + {k^2} = \frac{9}{4} \cr} $$
$$\therefore $$ Locus of $$\left( {h,\,k} \right)$$  is $${x^2} + {y^2} = \frac{9}{4}$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section