Question

Let $${a_n} = \int_0^{\frac{\pi }{2}} {{{\cos }^n}x.\cos \,nx\,dx.} $$      Then $${a_n}:{a_{n + 1}}$$   is equal to :

A. $$3:1$$
B. $$2:3$$
C. $$2:1$$  
D. $$3:4$$
Answer :   $$2:1$$
Solution :
$$\eqalign{ & {a_{n + 1}} - {a_n} = \int_0^{\frac{\pi }{2}} {\left\{ {{{\cos }^{n + 1}}x.\cos \left( {n + 1} \right)x - {{\cos }^n}x.\cos \,nx} \right\}dx} \cr & = \int_0^{\frac{\pi }{2}} {{{\cos }^n}x.\left\{ {\cos \,x.\cos \left( {n + 1} \right)x - \cos \,nx} \right\}} dx \cr & = \int_0^{\frac{\pi }{2}} {{{\cos }^n}x.\left\{ { - \sin \,x.\sin \left( {n + 1} \right)x} \right\}dx} \cr & = \left[ {\sin \left( {n + 1} \right)x.\frac{{{{\cos }^{n + 1}}x}}{{n + 1}}} \right]_0^{\frac{\pi }{2}} - \int_0^{\frac{\pi }{2}} {\frac{{{{\cos }^{n + 1}}x}}{{n + 1}}.\left( {n + 1} \right)\cos \left( {n + 1} \right)x\,dx} \cr & = - {a_{n + 1}} \cr & \therefore 2{a_{n + 1}} = {a_n} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section