Question

Let $$\alpha ,\beta $$  be the roots of the equation $$\left( {x - a} \right)\left( {x - b} \right) = c,c \ne 0.$$     Then the roots of the equation $$\left( {x - \alpha } \right)\left( {x - \beta } \right) + c = 0\,\,{\text{are}}$$

A. $$a, c$$
B. $$b, c$$
C. $$a, b$$  
D. $$a + c, b + c$$
Answer :   $$a, b$$
Solution :
$$\eqalign{ & \alpha ,\beta \,\,{\text{are roots of the equation }}\left( {x - a} \right)\left( {x - b} \right) = c,c \ne 0 \cr & \therefore \,\,\left( {x - a} \right)\left( {x - b} \right) - c = \left( {x - \alpha } \right)\left( {x - \beta } \right) \cr & \Rightarrow \,\,\left( {x - \alpha } \right)\left( {x - \beta } \right) + c = \left( {x - a} \right)\left( {x - b} \right) \cr & \Rightarrow \,\,{\text{roots of }}\left( {x - \alpha } \right)\left( {x - \beta } \right) + c = 0\,\,{\text{are }}\,a\,{\text{and }}b. \cr & \therefore \,\,\left( {\text{C}} \right){\text{is the correct option}}{\text{.}} \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section