Question

Let $$\alpha \left( a \right)$$  and $$\beta \left( a \right)$$  be the roots of the equation $$\left( {\root 3 \of {1 + a} - 1} \right){x^2} + \left( {\sqrt {1 + a} - 1} \right)x + \left( {\root 6 \of {1 + a} - 1} \right) = 0$$           where $$a > - 1.$$   Then $$\mathop {\lim }\limits_{a \to {0^ + }} \alpha \left( a \right)$$   and $$\mathop {\lim }\limits_{a \to {0^ + }} \beta \left( a \right)$$    are-

A. $$ - \frac{5}{2}\,\,{\text{and}}\,\,1$$
B. $$ - \frac{1}{2}\,\,{\text{and}}\,\, - 1$$  
C. $$ - \frac{7}{2}\,\,{\text{and}}\,\,2$$
D. $$ - \frac{9}{2}\,\,{\text{and}}\,\,3$$
Answer :   $$ - \frac{1}{2}\,\,{\text{and}}\,\, - 1$$
Solution :
$$\eqalign{ & {\text{Given equation,}} \cr & \left( {\root 3 \of {1 + a} - 1} \right){x^2} + \left( {\sqrt {1 + a} - 1} \right)x + \left( {\root 6 \of {1 + a} - 1} \right) = 0 \cr & \left( {{{\left( {1 + a} \right)}^{\frac{1}{3}}} - 1} \right){x^2} + \left( {{{\left( {1 + a} \right)}^{\frac{1}{2}}} - 1} \right)x + \left( {{{\left( {1 + a} \right)}^{\frac{1}{6}}} - 1} \right) = 0.....\left( 1 \right) \cr & \mathop {\lim }\limits_{a \to {0^ + }} \alpha \left( a \right),\,\mathop {\lim }\limits_{a \to {0^ + }} \beta \left( a \right){\text{ and }}\alpha \left( a \right),\,\beta \left( a \right){\text{ are the roots}} \cr & {\text{Put}}\,1 + a = y,{\text{ equation }}\left( 1 \right){\text{ can be re - written as:}} \cr & \left( {{y^{\frac{1}{3}}} - 1} \right){x^2} + \left( {{y^{\frac{1}{2}}} - 1} \right)x + \left( {{y^{\frac{1}{6}}} - 1} \right) = 0 \cr & \Rightarrow \frac{{\left( {{y^{\frac{1}{3}}} - 1} \right){x^2}}}{{\left( {y - 1} \right)}} + \frac{{\left( {{y^{\frac{1}{2}}} - 1} \right)x}}{{\left( {y - 1} \right)}} + \frac{{\left( {{y^{\frac{1}{6}}} - 1} \right)}}{{\left( {y - 1} \right)}} = 0 \cr & {\text{Taking }}y \to 1,{\text{ as }}a \to 0 \cr & \Rightarrow \frac{{\left( {{y^{\frac{1}{3}}} - 1} \right){x^2}}}{{\left( {{y^{\frac{1}{3}}} - 1} \right)\left( {{y^{\frac{2}{3}}} + 1 + 2{y^{\frac{1}{3}}}} \right)}} + \frac{{\left( {{y^{\frac{1}{2}}} - 1} \right)x}}{{\left( {{y^{\frac{1}{2}}} - 1} \right)\left( {{y^{\frac{1}{2}}} + 1} \right)}} + \frac{{\left( {{y^{\frac{1}{6}}} - 1} \right){x^2}}}{{\left( {{y^{\frac{1}{6}}} - 1} \right)\left( {{y^{\frac{5}{6}}} + 2{y^{\frac{1}{6}}} + 2{y^{\frac{3}{6}}} + 1} \right)}} = 0 \cr & {\text{As putting }}y \to 1,{\text{ we get}} \cr & \Rightarrow \frac{{{x^2}}}{3} + \frac{x}{2} + \frac{1}{6} = 0 \cr & \Rightarrow 2{x^2} + 3x + 1 = 0 \cr & {\text{we get, }}x = - 1,\, - \frac{1}{2} \cr & {\text{Hence, option B is correct}}{\text{.}} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section