Question

Let $$ABCD$$  be a quadrilateral with area 18, with side $$AB$$  parallel to the side $$CD$$  and $$2AB = CD.$$   Let $$AD$$  be perpendicular to $$AB$$  and $$CD.$$  If a circle is drawn inside the quadrilateral $$ABCD$$   touching all the sides, then its radius is

A. 3
B. 2  
C. $$\frac{3}{2}$$
D. 1
Answer :   2
Solution :
$${\text{Given }}AB\parallel CD,$$   $$CD = 2AB$$
Let $$AB = a$$   then $$CD = 2a$$   Let radius of circle be $$r.$$ Let circle touches $$AB$$  at $$P, BC$$  at $$Q, AD$$  at $$R$$ and $$CD$$  at $$S.$$
Then $$AR = AP = r, BP = BQ = a - r$$
$$DR = DS = r$$   and $$CQ = CS = 2a - r$$     In $$\Delta BEC$$
$$\eqalign{ & B{C^2} = B{E^2} + E{C^2} \cr & \Rightarrow \,\,{\left( {a - r + 2a - r} \right)^2} = {\left( {2r} \right)^2} + {\left( a \right)^2} \cr & \Rightarrow \,\,9{a^2} + 4{r^2} - 12ar = 4{r^2} + {a^2} \cr & \Rightarrow \,\,a = \frac{3}{2}r\,\,\,\,\,\,\,.....\left( 1 \right) \cr} $$
Also $$Ar$$ (quad. $$ABCD$$   ) $$=$$ 18
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & \Rightarrow \,\,a \times 2r + \frac{1}{2} \times a \times 2r = 18 \cr & \Rightarrow \,\,ar = 6 \cr & \Rightarrow \,\,\frac{{3{r^2}}}{2} = 6\,\left( {{\text{using equation }}\left( 1 \right)} \right) \cr & \Rightarrow \,\,{r^2} = 4 \cr & \Rightarrow \,\,r = 2 \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section