Question

Let $$a,\,b,\,c$$   be three distinct positive real numbers. If $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$    lie in a plane, where $$\overrightarrow p = a\overrightarrow i - a\overrightarrow j + b\overrightarrow k ,\,\overrightarrow q = \overrightarrow i + \overrightarrow k $$       and $$\overrightarrow r = c\overrightarrow i + c\overrightarrow j + b\overrightarrow k ,$$     then $$b$$ is :

A. the AM of $$a,\,c$$
B. the GM of $$a,\,c$$
C. the HM of $$a,\,c$$  
D. equal to $$0$$
Answer :   the HM of $$a,\,c$$
Solution :
\[{\rm{Here }}\left[ {\overrightarrow p \,\,\overrightarrow q \,\,\overrightarrow r } \right] = 0.{\rm{ \,So, }}\left| \begin{array}{l} a\,\,\,\,\, - a\,\,\,\,\,\,b\\ 1\,\,\,\,\,\,\,\,\,\,\,0\,\,\,\,\,\,\,\,\,1\\ c\,\,\,\,\,\,\,\,\,\,\,c\,\,\,\,\,\,\,\,\,\,b \end{array} \right| = 0\]
$$\eqalign{ & {\text{or }}a\left( {0 - c} \right) + a\left( {b - c} \right) + b\left( {c - 0} \right) = 0 \cr & \Rightarrow \,ab + bc = 2ac \cr & \therefore \,b = \frac{{2ac}}{{a + c}} \cr} $$
So, $$b$$ is the HM of $$a,\,c.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section