Question

Let $$A,\,B,\,C$$   be finite sets. Suppose that $$n\left( A \right) = 10,\,n\left( B \right) = 15,\,n\left( C \right) = 20,\,n\left( {A \cap B} \right) = 8$$          and $$n\left( {B \cap C} \right) = 9.$$   Then the possible value of $$n\left( {A \cup B \cup C} \right)$$    is :

A. 26
B. 27
C. 28
D. any of the three values 26, 27, 28 is possible  
Answer :   any of the three values 26, 27, 28 is possible
Solution :
$$\eqalign{ & {\text{We have}} \cr & n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right) \cr & = 10 + 15 + 20 - 8 - 9 - n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right) \cr & = 28 - \left\{ {n\left( {C \cap A} \right) - n\left( {A \cap B \cap C} \right)} \right\}.....({\text{i}}) \cr & {\text{Since }}\,n\left( {C \cap A} \right) \geqslant n\left( {A \cap B \cap C} \right) \cr & {\text{We have }}n\left( {C \cap A} \right) - n\left( {A \cap B \cap C} \right) \geqslant 0.....({\text{ii}}) \cr & {\text{From (i) and (ii) : }}n\left( {A \cup B \cup C} \right) \leqslant 28.....({\text{iii}}) \cr & {\text{Now, }}n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right) \cr & = 10 + 15 - 8 = 17 \cr & {\text{and }}n\left( {B \cup C} \right) = n\left( B \right) + n\left( C \right) - n\left( {B \cap C} \right) \cr & = 15 + 20 - 9 = 26 \cr & {\text{Since, }}n\left( {A \cup B \cup C} \right) \geqslant n\left( {A \cup C} \right)\,{\text{and }}n\left( {A \cup B \cup C} \right) \geqslant n\left( {B \cup C} \right){\text{,}} \cr & {\text{we have }}n\left( {A \cup B \cup C} \right) \geqslant 17{\text{ and }}n\left( {A \cup B \cup C} \right) \geqslant 26 \cr & {\text{Hence }}n\left( {A \cup B \cup C} \right) \geqslant 26.....({\text{iv}}) \cr & {\text{From (iii) and (iv) we obtain}} \cr & {\text{26}} \leqslant n\left( {A \cup B \cup C} \right) \leqslant 28 \cr & {\text{Also }}n\left( {A \cup B \cup C} \right){\text{ is a positive integer}} \cr & \therefore \,n\left( {A \cup B \cup C} \right) = 26{\text{ or }}27{\text{ or }}28 \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section