Question

Let $$a,\,b,\,c$$   be distinct non-negative numbers. If the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$    and $$c\hat i + c\hat j + b\hat k$$   lie in a plane, then $$c$$ is :

A. the Arithmetic Mean of $$a$$ and $$b$$
B. the Geometric Mean of $$a$$ and $$b$$  
C. the harmonic Mean of $$a$$ and $$b$$
D. equal to zero
Answer :   the Geometric Mean of $$a$$ and $$b$$
Solution :
$$a,\,b,\,c$$   are distinct non negative numbers and the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$     and $$c\hat i + c\hat j + b\hat k$$   are coplanar.
\[\therefore \left| \begin{array}{l} a\,\,\,\,a\,\,\,\,c\\ 1\,\,\,\,0\,\,\,\,1\\ c\,\,\,\,c\,\,\,\,b \end{array} \right| = 0 \Rightarrow \left| \begin{array}{l} a\,\,\,\,a\,\,\,\,c - a\\ 1\,\,\,\,0\,\,\,\,\,\,\,0\\ c\,\,\,\,c\,\,\,\,b - c \end{array} \right|\]
Operating $${C_3} \to {C_3} - {C_1}$$
Expanding along $${R_2},$$  we get
\[ - \left| \begin{array}{l} a\,\,\,\,c - a\\ c\,\,\,\,b - c \end{array} \right| = c\left( {c - a} \right) - a\left( {b - c} \right) = 0\]
$$\eqalign{ & \Rightarrow {c^2} - ac - ab + ac = 0 \cr & \Rightarrow {c^2} = ab \Rightarrow a,\,c,\,b\,\,{\text{are in G}}{\text{.P}}{\text{.}} \cr} $$
$$\therefore \,\,c$$   is the Geometric Mean of $$a$$ and $$b.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section