Question

Let $$AB$$  be a chord of the circle $${x^2} + {y^2} = {r^2}$$    subtending a right angle at the centre. Then the locus of the centroid of the triangle $$PAB$$  as $$P$$ moves on the circle is-

A. a parabola
B. a circle  
C. an ellipse
D. a pair of straight lines
Answer :   a circle
Solution :
$${x^2} + {y^2} = {r^2}$$     is a circle with centre at $$\left( {0,\,0} \right)$$  and radius $$r$$ units.
Circle mcq solution image
Any arbitrary point $$P$$ on it is $$\left( {r\,\cos \,\theta ,\,r\,\sin \,\theta } \right)$$
Choosing $$A$$ and $$B$$ as $$\left( { - r,\,0} \right)$$  and $$\left( { 0,\,- r} \right)$$
[So that $$\angle AOB = {90^ \circ }$$   ]
For locus of centroid of $$\Delta ABP$$
$$\eqalign{ & \left( {\frac{{r\,\cos \,\theta - r}}{3},\,\frac{{r\,\sin \,\theta - r}}{3}} \right) = \left( {x,\,y} \right) \cr & \Rightarrow r\,\cos \,\theta - r = 3x \cr & \,\,\,\,\,\,r\,\sin \,\theta - r = 3y \cr & \Rightarrow r\,\cos \,\theta = 3x + r \cr & \,\,\,\,\,\,r\,\sin \,\theta = 3y + r \cr} $$
Squaring and adding $${\left( {3x + r} \right)^2} + {\left( {3y + r} \right)^2} = {r^2}$$      which is a circle.

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section