Question
      
        Let $$a,\,b$$  and $$c$$ be distinct non-negative numbers. If the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$     and $$c\hat i + c\hat j + b\hat k$$   lie in a plane, then $$c$$ is :                                                                                                              
       A.
        the Geometric Mean of $$a$$ and $$b$$                 
              
       B.
        the Arithmetic Mean of $$a$$ and $$b$$              
       C.
        equal to zero              
       D.
        the Harmonic Mean of $$a$$ and $$b$$              
            
                Answer :  
        the Geometric Mean of $$a$$ and $$b$$      
             Solution :
        Vector $$a\vec i + a\vec j + c\vec k,\,\vec i + \vec k$$     and $$c\vec i + c\vec j + b\vec k$$   are coplanar 
\[\left| \begin{array}{l}
a\,\,\,\,\,\,\,a\,\,\,\,\,c\\
1\,\,\,\,\,\,0\,\,\,\,\,\,1\\
c\,\,\,\,\,\,\,c\,\,\,\,\,\,b
\end{array} \right| = 0\,\,\, \Rightarrow {c^2} = ab\,\,\, \Rightarrow c = \sqrt {ab} \]
$$\therefore \,\,c$$  is G.M. of $$a$$ and $$b.$$