Question

Let $$\overrightarrow {AB} = 3\overrightarrow i + \overrightarrow j - \overrightarrow k $$     and $$\overrightarrow {AC} = \overrightarrow i - \overrightarrow j + 3\overrightarrow k .$$     If the point $$P$$ on the line segment $$BC$$  is equidistant from $$AB$$  and $$AC$$  then $$\overrightarrow {AP} $$  is :

A. $$2\overrightarrow i - \overrightarrow k $$
B. $$\overrightarrow i - 2\overrightarrow k $$
C. $$2\overrightarrow i + \overrightarrow k $$  
D. none of these
Answer :   $$2\overrightarrow i + \overrightarrow k $$
Solution :
3D Geometry and Vectors mcq solution image
A point equidistant from $$AB$$  and $$AC$$  is on the bisectors of the angle $$BAC.$$
A vector along the internal bisector of the angle $$BAC$$
$$\eqalign{ & = \frac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \frac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}} \cr & = \frac{{3\overrightarrow i + \overrightarrow j - \overrightarrow k }}{{\sqrt {{3^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} + \frac{{\overrightarrow i - \overrightarrow j + 3\overrightarrow k }}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {3^2}} }} \cr & = \frac{1}{{\sqrt {11} }}\left( {4\overrightarrow i + 2\overrightarrow k } \right) \cr & \therefore \,\overrightarrow {AP} = t\left( {2\overrightarrow i + \overrightarrow k } \right) \cr & \therefore \,\overrightarrow {BP} = \overrightarrow {AP} - \overrightarrow {AB} = t\left( {2\overrightarrow i + \overrightarrow k } \right) - \left( {3\overrightarrow i + \overrightarrow j - \overrightarrow k } \right) \cr & \therefore \,\overrightarrow {BP} = \left( {2t - 3} \right)\overrightarrow i - \overrightarrow j + \left( {t + 1} \right)\overrightarrow k \cr & {\text{Also,}}\,\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} = \left( {\overrightarrow i - \overrightarrow j + 3\overrightarrow k } \right) - \left( {3\overrightarrow i + \overrightarrow j - \overrightarrow k } \right) = - 2\overrightarrow i - 2\overrightarrow j + 4\overrightarrow k \cr & {\text{But }}\overrightarrow {BP} = s\overrightarrow {BC} \cr & \therefore \,\left( {2t - 3} \right)\overrightarrow i - \overrightarrow j + \left( {t + 1} \right)\overrightarrow k = s\left( { - 2\overrightarrow i - 2\overrightarrow j + 4\overrightarrow k } \right) \cr & {\text{or }}2t - 3 = - 2s,\,\,\, - 1 = - 2s,\,\,\,t + 1 = 4s \cr & \therefore \,s = \frac{1}{2}{\text{ and }}t = 1 \cr & \therefore \,\overrightarrow {AP} = 2\overrightarrow i + \overrightarrow k . \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section