Question

Let $$a=2i+j+k,\,b=i+2j-k$$      and a unit vector $$c$$ be coplanar. If $$c$$ is perpendicular to $$a,$$  then $$c=?$$

A. $$\frac{1}{{\sqrt 2 }}\left( { - j + k} \right)$$  
B. $$\frac{1}{{\sqrt 3 }}\left( {- i - j - k} \right)$$
C. $$\frac{1}{{\sqrt 5 }}\left( { i - 2j} \right)$$
D. $$\frac{1}{{\sqrt 3 }}\left( { i - j - k} \right)$$
Answer :   $$\frac{1}{{\sqrt 2 }}\left( { - j + k} \right)$$
Solution :
As $$c$$ is coplanar with $$a$$ and $$b,$$  we take,
$$c = \alpha a + \beta b.....(1)$$
where $$\alpha ,\beta $$  are scalars.
As $$c$$ is perpendicular to $$a,\,c.a=0$$
$$ \therefore $$  From (1) we get, $$0 = \alpha \,a.a + \beta \,b.a$$
$$\eqalign{ & \Rightarrow 0 = \alpha \left( 6 \right) + \beta \left( {2 + 2 - 1} \right) = 3\left( {2\alpha + \beta } \right) \Rightarrow \beta = - 2\alpha \cr & {\text{Thus, }}c = \alpha \left( {a - 2b} \right) = \alpha \left( { - 3j + 3k} \right) = 3\alpha \left( { - j + k} \right) \cr & \Rightarrow {\left| {\vec c} \right|^2} = 9{\alpha ^2}\left( {1 + 1} \right) = 18{\alpha ^2}\,\, \Rightarrow 1 = 18{\alpha ^2} \cr & \Rightarrow \alpha = \pm \frac{1}{{3\sqrt 2 }} \cr & \therefore c = \pm \frac{1}{{\sqrt 2 }}\left( { - j + k} \right) \cr} $$
Thus, we may take $$c = \frac{1}{{\sqrt 2 }}\left( { - j + k} \right).$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section