Question

Let $$A = \left\{ {p,\,q,\,r} \right\}.$$   Which of the following is an equivalence relation in $$A\,?$$

A. $${R_1} = \left\{ {\left( {p,\,q} \right),\left( {q,\,r} \right),\left( {p,\,r} \right),\left( {p,\,q} \right)} \right\}$$
B. $${R_2} = \left\{ {\left( {r,\,q} \right),\left( {r,\,p} \right),\left( {r,\,r} \right),\left( {q,\,q} \right)} \right\}$$
C. $${R_3} = \left\{ {\left( {p,\,p} \right),\left( {q,\,q} \right),\left( {r,\,r} \right),\left( {p,\,q} \right)} \right\}$$
D. None of these  
Answer :   None of these
Solution :
$${R_1}$$ is not reflexive, because $$\left( {q,\,q} \right)\left( {r,\,r} \right)\, \notin \,{R_1}$$
$$\therefore \,{R_1}$$  is not equivalence relation
$${R_2}$$ is not reflexive, because $$\left( {p,\,p} \right)\, \notin \,{R_2}$$
$$\therefore \,{R_2}$$  is not equivalence relation
$${R_3}$$ is reflexive, because $$\left( {p,\,p} \right),\,\left( {q,\,q} \right),\,\left( {r,\,r} \right)\, \in \,{R_3}$$
$${R_3}$$ is not symmetric, because $$\left( {p,\,q} \right)\, \in \,{R_3}$$   but $$\left( {q,\,p} \right)\, \notin \,{R_3}.$$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section