Question

Let $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow c = \overrightarrow j - \overrightarrow k .$$       If $$\overrightarrow b $$ is a vector satisfying $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$   and $$\overrightarrow a .\overrightarrow b = 3$$   then $$\overrightarrow b $$ is :

A. $$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$  
B. $$\frac{1}{3}\left( {5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k } \right)$$
C. $$3\overrightarrow i - \overrightarrow j - \overrightarrow k $$
D. none of these
Answer :   $$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$
Solution :
$$\eqalign{ & {\text{Let }}\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \cr & \overrightarrow a .\overrightarrow b = 3\,\,\,\, \Rightarrow x + y + z = 3 \cr & \overrightarrow a \times \overrightarrow b = \overrightarrow c \,\,\, \Rightarrow \left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) \times \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) = \overrightarrow j - \overrightarrow k \cr & {\text{or }}\left( {z - y} \right)\overrightarrow i + \left( {x - z} \right)\overrightarrow j + \left( {y - x} \right)\overrightarrow k = \overrightarrow j - \overrightarrow k \cr & \Rightarrow \,z - y = 0,\,x - z = 1,\,y - x = - 1 \cr} $$
Solving the four equations in $$x,\,y,\,z,$$   we get $$x = \frac{5}{3},\,y = \frac{2}{3},\,z = \frac{2}{3}.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section