Question
Let $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow c = \overrightarrow j - \overrightarrow k .$$ If $$\overrightarrow b $$ is a vector satisfying $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$ and $$\overrightarrow a .\overrightarrow b = 3$$ then $$\overrightarrow b $$ is :
A.
$$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$
B.
$$\frac{1}{3}\left( {5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k } \right)$$
C.
$$3\overrightarrow i - \overrightarrow j - \overrightarrow k $$
D.
none of these
Answer :
$$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$
Solution :
$$\eqalign{
& {\text{Let }}\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \cr
& \overrightarrow a .\overrightarrow b = 3\,\,\,\, \Rightarrow x + y + z = 3 \cr
& \overrightarrow a \times \overrightarrow b = \overrightarrow c \,\,\, \Rightarrow \left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) \times \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) = \overrightarrow j - \overrightarrow k \cr
& {\text{or }}\left( {z - y} \right)\overrightarrow i + \left( {x - z} \right)\overrightarrow j + \left( {y - x} \right)\overrightarrow k = \overrightarrow j - \overrightarrow k \cr
& \Rightarrow \,z - y = 0,\,x - z = 1,\,y - x = - 1 \cr} $$
Solving the four equations in $$x,\,y,\,z,$$ we get $$x = \frac{5}{3},\,y = \frac{2}{3},\,z = \frac{2}{3}.$$