Question

let $$\vec a = \hat i - \hat j,\,\vec b = \hat j - \hat k,\,\vec c = \hat k - \hat i.$$       if $${\vec d}$$ is a unit vector such that $$\vec a.\vec d = 0 = \left[ {\vec b\,\vec c\,\vec d} \right],$$     then $${\vec d}$$ equals :

A. $$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$  
B. $$ \pm \frac{{\hat i + \hat j - \hat k}}{{\sqrt 3 }}$$
C. $$ \pm \frac{{\hat i + \hat j + \hat k}}{{\sqrt 3 }}$$
D. $$ \pm \,\hat k$$
Answer :   $$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$
Solution :
$$\eqalign{ & {\text{Let}}\,\,\vec d = x\,\hat i\, + y\,\hat j + z\,\hat k \cr & {\text{where}}\,\,{x^2} + {y^2} + {z^2}.....(1) \cr & \left( {\vec d\,\,{\text{being}}\,{\text{unit}}\,{\text{vector}}} \right)\,\,\therefore \vec a.\vec d = 0 \cr & \Rightarrow x - y = 0\,\,\,\, \Rightarrow x = y.....(2) \cr} $$
\[\left[ {\vec b\,\vec c\,\vec d} \right] = 0 \Rightarrow \left| \begin{array}{l} \,\,\,\,\,\,0\,\,\,\,1\,\,\,\, - 1\\ - 1\,\,\,\,0\,\,\,\,1 = 0\\ \,\,\,\,\,\,x\,\,\,\,y\,\,\,\,z \end{array} \right|\]
$$\eqalign{ & \Rightarrow x + y + z = 0 \cr & \Rightarrow 2x + z = 0\,\,\,\,\,\,\,\,\left( {{\text{using }}\,(2)} \right) \cr & \Rightarrow z = - 2x.....(3) \cr & {\text{From (1),}}\,{\text{(2) and (3)}} \cr & {x^2} + {x^2} + 4{x^2} = 1 \Rightarrow x = \pm \frac{1}{{\sqrt 6 }} \cr & \therefore d = \pm \left( {\frac{1}{{\sqrt 6 }}\hat i + \frac{1}{{\sqrt 6 }}\hat j - \frac{2}{{\sqrt 6 }}\hat k} \right) = \pm \left( {\frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}} \right) \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section