Question

Let \[A = \left[ {\begin{array}{*{20}{c}} {x + y}&y\\ {2x}&{x - y} \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right]\]      and \[C = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right].\]  If $$AB =C,$$   then what is $$A^2$$ equal to ?

A. \[\left[ {\begin{array}{*{20}{c}} 6&{ - 10}\\ 4&{26} \end{array}} \right]\]  
B. \[\left[ {\begin{array}{*{20}{c}} { - 10}&{5}\\ 4&{24} \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} { - 5}&{ - 6}\\ { - 4}&{ - 20} \end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}} {- 5}&{ - 7}\\ {- 5}&{20} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} 6&{ - 10}\\ 4&{26} \end{array}} \right]\]
Solution :
\[A = \left[ {\begin{array}{*{20}{c}} {x + y}&y\\ {2x}&{x - y} \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right]{\rm{ and }}\,\,C = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right]\]
Here, $$AB = C$$
\[\begin{array}{l} \therefore \left[ {\begin{array}{*{20}{c}} {x + y}&y\\ {2x}&{x - y} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right]\\ \Rightarrow \left[ {\begin{array}{*{20}{c}} {2\left( {x + y} \right)}&{ - y}\\ {4x}&{ - x + y} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right] \end{array}\]
$$\eqalign{ & 2x + y = 3\,\,\,.....\left( {\text{i}} \right) \cr & 3x + y = 2\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
From equations (i) and (ii), we get
$$x = - 1$$  and $$y = 5$$
\[\begin{array}{l} \therefore A = \left[ {\begin{array}{*{20}{c}} 4&5\\ { - 2}&{ - 6} \end{array}} \right]\\ {\rm{Now, }}\,\,{A^2} = \left[ {\begin{array}{*{20}{c}} 4&5\\ { - 2}&{ - 6} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 4&5\\ { - 2}&{ - 6} \end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}} {16 - 10}&{20 - 30}\\ { - 8 + 12}&{ - 10 + 36} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 6&{ - 10}\\ 4&{26} \end{array}} \right] \end{array}\]

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section