Question

Let $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ be three vectors having magnitudes $$1,\,1$$  and $$2$$ respectively. If $$\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \overrightarrow b = \overrightarrow 0 ,$$      the acute angle between $$\overrightarrow a $$ and $$\overrightarrow c $$ is :

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{4}$$
C. $$\frac{\pi }{6}$$  
D. none of these
Answer :   $$\frac{\pi }{6}$$
Solution :
$$\eqalign{ & {\text{Here }}\left| {\overrightarrow a } \right| = 1,\,\,\left| {\overrightarrow b } \right| = 1,\,\,\left| {\overrightarrow c } \right| = 2 \cr & {\text{Now, }}\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \overrightarrow b = \overrightarrow 0 \cr & {\text{or }}\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow a - \left( {\overrightarrow a .\overrightarrow a } \right)\overrightarrow c + \overrightarrow b = \overrightarrow 0 \cr & {\text{or }}2\cos \,\theta \,\overrightarrow a - \overrightarrow c + \overrightarrow b = 0 \cr & {\text{or }}{\left( {\overrightarrow c - 2\cos \,\theta \,\overrightarrow a } \right)^2} = {\overrightarrow b ^2} \cr & {\text{or }}{\left| {\overrightarrow c } \right|^2} + 4{\cos ^2}\theta \,{\left| {\overrightarrow a } \right|^2} - 4\cos \,\theta \,\overrightarrow c .\overrightarrow a = {\left| {\overrightarrow b } \right|^2} \cr & {\text{or }}4 + 4{\cos ^2}\theta - 4\cos \,\theta .2\cos \,\theta = 1 \cr & {\text{or }}4{\cos ^2}\theta = 3 \cr & \therefore \,\,\theta = \frac{\pi }{6}. \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section