Question

Let $$\vec a,\,\vec b$$  and $$\vec c$$ be three non-zero vectors such that no two of these are collinear. If the vector $$\vec a + 2\vec b$$  is collinear with $$\vec c$$ and $$\vec b + 3\vec c$$  is collinear with $$\vec a$$ ($$\lambda $$ being some non-zero scalar) then $$\vec a + 2\vec b + 6\vec c$$   equals

A. $$0$$
B. $$\lambda \vec b$$
C. $$\lambda \vec c$$  
D. $$\lambda \vec a$$
Answer :   $$\lambda \vec c$$
Solution :
Let $$\vec a + 2\vec b = t\vec c$$   and $$\vec b + 3\vec c = s\vec a,$$   where $$t$$ and $$s$$ are scalars. Adding, we get
$$\eqalign{ & \vec a + 3\vec b + 3\vec c = t\vec c + s\vec a \cr & \Rightarrow \vec a + 2\vec b + 6\vec c = t\vec c + s\vec a - \vec b + 3\vec c \cr & \Rightarrow \vec a + 2\vec b + 6\vec c = t\vec c + \left( {\vec b + 3\vec c} \right) - \vec b + 3\vec c \cr & \Rightarrow \vec a + 2\vec b + 6\vec c = \left( {t + 6} \right)\vec c\,\,\,\,\,\,\,\left[ {{\text{using }}s\vec a = \vec b + 3\vec c} \right] \cr & \Rightarrow \vec a + 2\vec b + 6\vec c = \lambda \vec c,{\text{ where }}\lambda = t + 6 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section