Question
Let $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$ is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$ is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$ equals :
A.
$$0$$
B.
$$\lambda \overrightarrow b $$
C.
$$\lambda \overrightarrow c $$
D.
$$\lambda \overrightarrow a $$
Answer :
$$\lambda \overrightarrow c $$
Solution :
Let $$\overrightarrow a + 2\overrightarrow b = t\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c = s\overrightarrow a ,$$ where $$t$$ and $$s$$ are scalars. Adding, we get
$$\eqalign{
& \overrightarrow a + 3\overrightarrow b + 3\overrightarrow c = t\overrightarrow c + s\overrightarrow a \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = t\overrightarrow c + s\overrightarrow a - \overrightarrow b + 3\overrightarrow c \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = t\overrightarrow c + \left( {\overrightarrow b + 3\overrightarrow c } \right) - \overrightarrow b + 3\overrightarrow c \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = \left( {t + 6} \right)\overrightarrow c \,\,\,\,\,\,\,\,\,\,\left[ {{\text{using }}s\overrightarrow a = \overrightarrow b + 3\overrightarrow c } \right] \cr
& \Rightarrow \overrightarrow a + 2\overrightarrow b + 6\overrightarrow c = \lambda \overrightarrow c ,{\text{ where }}\lambda = t + 6 \cr} $$