Question

Let $$\vec a,\,\vec b$$  and $$\vec c$$ be non-zero vectors such that $$\left( {\vec a \times \vec b} \right) \times \vec c = \frac{1}{3}\left| {\vec b} \right|\left| {\vec c} \right|\,\vec a.$$      If $$\theta $$ is the acute angle between the vectors $${\vec b}$$ and $${\vec c},$$  then $$\sin \,\theta $$  equals :

A. $$\frac{{2\sqrt 2 }}{3}$$  
B. $$\frac{{\sqrt 2 }}{3}$$
C. $$\frac{2}{3}$$
D. $$\frac{1}{3}$$
Answer :   $$\frac{{2\sqrt 2 }}{3}$$
Solution :
Given $$\left( {\vec a \times \vec b} \right) \times \vec c = \frac{1}{3}\left| {\vec b} \right|\left| {\vec c} \right|\,\vec a$$
Clearly $${\vec a}$$ and $${\vec b}$$ are non-collinear
$$\eqalign{ & \Rightarrow \left( {\vec a.\vec c} \right)\vec b - \left( {\vec b.\vec c} \right)\vec a = \frac{1}{3}\left| {\vec b} \right|\left| {\vec c} \right|\,\vec a \cr & \therefore \vec a.\vec c = 0{\text{ and }} - \vec b.\vec c = \frac{1}{3}\left| {\vec b} \right|\left| {\vec c} \right| \Rightarrow \cos \,\theta = \frac{{ - 1}}{3} \cr & \therefore \sin \,\theta = \sqrt {1 - \frac{1}{9}} = \frac{{2\sqrt 2 }}{3}\,\,\,\left[ {\theta {\text{ is acute angle between }}\vec b{\text{ and }}\vec c} \right] \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section