Question

Let $$\overrightarrow a = 2\overrightarrow i - \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 2\overrightarrow j - \overrightarrow k $$        and $$\overrightarrow c = \overrightarrow i + \overrightarrow j - 2\overrightarrow k .$$     A vector in the plane of $$\overrightarrow b $$ and $$\overrightarrow c $$ whose projection on $$\overrightarrow a $$ has the magnitude $$\sqrt {\frac{2}{3}} $$ is :

A. $$2\overrightarrow i + 3\overrightarrow j - 3\overrightarrow k $$
B. $$2\overrightarrow i + 3\overrightarrow j + 3\overrightarrow k $$
C. $$ - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k $$  
D. $$2\overrightarrow i + \overrightarrow j + 5\overrightarrow k $$
Answer :   $$ - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k $$
Solution :
Let $$\overrightarrow p = \lambda \overrightarrow b + \mu \overrightarrow c $$
The projection of $$\overrightarrow p $$ on $$\overrightarrow a = \frac{{\overrightarrow p .\overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \sqrt {\frac{2}{3}} ......\left( 1 \right)$$
$$\eqalign{ & \because \,\overrightarrow p = \lambda \left( {\overrightarrow i + 2\overrightarrow j - \overrightarrow k } \right) + \mu \left( {\overrightarrow i + \overrightarrow j - 2\overrightarrow k } \right) \cr & \therefore \,\overrightarrow p .\overrightarrow a = 2\left( {\lambda + \mu } \right) - 1\left( {2\lambda + \mu } \right) + 1\left( { - \lambda - 2\mu } \right) = - \lambda - \mu \cr & \therefore \,\left( 1 \right){\text{gives}}\frac{{ - \lambda - \mu }}{{\sqrt {{2^2} + {1^2} + {1^2}} }} = \sqrt {\frac{2}{3}} \,\,\,{\text{or }}\lambda + \mu = - 2 \cr & \therefore \overrightarrow p = \lambda \left( {\overrightarrow i + 2\overrightarrow j - \overrightarrow k } \right) + \mu \left( {\overrightarrow i + \overrightarrow j - 2\overrightarrow k } \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\lambda + \mu } \right)\overrightarrow i + \left( {2\lambda + \mu } \right)\overrightarrow j - \left( {\lambda + 2\mu } \right)\overrightarrow k \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - 2\overrightarrow i + \left( {\lambda - 2} \right)\overrightarrow j + \left( {\lambda + 4} \right)\overrightarrow k , \cr} $$
where $$\lambda $$ is a scalar parameter.
When $$\lambda = 1,\,\overrightarrow p = - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k .$$      Other options hold for no real $$\lambda .$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section