Question

Let $${a_1},{a_2},{a_3}......$$   be terms on A.P. If $$\frac{{{a_1} + {a_2} + ...... + {a_p}}}{{{a_1} + {a_2} + ...... + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},\,p \ne q,{\text{ then }}\frac{{{a_6}}}{{{a_{21}}}}{\text{ equals}}$$

A. $$\frac{{41}}{{11}}$$
B. $$\frac{{7}}{{2}}$$
C. $$\frac{{2}}{{7}}$$
D. $$\frac{{11}}{{41}}$$  
Answer :   $$\frac{{11}}{{41}}$$
Solution :
$$\eqalign{ & \frac{{\frac{p}{2}\left[ {2{a_1} + \left( {p - 1} \right)d} \right]}}{{\frac{q}{2}\left[ {2{a_1} + \left( {q - 1} \right)d} \right]}} = \frac{{{p^2}}}{{{q^2}}} \cr & \Rightarrow \,\,\frac{{2{a_1} + \left( {p - 1} \right)d}}{{2{a_1} + \left( {q - 1} \right)d}} = \frac{p}{q} \cr & \frac{{{a_1} + \left( {\frac{{p - 1}}{2}} \right)d}}{{{a_1} + \left( {\frac{{q - 1}}{2}} \right)d}} = \frac{p}{q} \cr & {\text{For }}\frac{{{a_6}}}{{{a_{21}}}},\,\,p = 11,\,\,q = 41 \cr & \Rightarrow \,\,\frac{{{a_6}}}{{{a_{21}}}} = \frac{{11}}{{41}} \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section