Question

Let $$A = \left( {1,\,2} \right),\,B = \left( {3,\,4} \right)$$     and let $$C = \left( {x,\,y} \right)$$   be a point such that $$\left( {x - 1} \right)\left( {x - 3} \right) + \left( {y - 2} \right)\left( {y - 4} \right) = 0.$$        If ar $$\left( {\Delta ABC} \right) = 1$$   then maximum number of positions of $$C$$ in the $$x-y$$  plane is :

A. 2
B. 4  
C. 8
D. none of these
Answer :   4
Solution :
Straight Lines mcq solution image
$$\eqalign{ & \left( {x - 1} \right)\left( {x - 3} \right) + \left( {y - 2} \right)\left( {y - 4} \right) = 0 \cr & \Rightarrow AC \bot BC\,\,\,\,\,\, \Rightarrow \angle ACB = {90^ \circ } \cr & \therefore C{\text{ is on the circle whose diameter is }}AB \cr & AB = 2\sqrt 2 \cr & {\text{As ar }}\left( {\Delta ABC} \right) = 1,\,\frac{1}{2}.2\sqrt 2 .\left( {{\text{altitude}}} \right) = 1 \cr & \therefore {\text{altitude}} = \frac{1}{{\sqrt 2 }}{\text{ < radius}}{\text{.}} \cr & {\text{So, there are four possible positions of }}C. \cr & {\bf{Note:}} \cr & {\text{If ar}}\left( {\Delta ABC} \right) = 2,{\text{ altitude}} = {\text{radius }}\, \Rightarrow {\text{ two possible positions of }}C. \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section