Question
Let $$0 < \theta < \frac{\pi }{2}.$$ If the eccentricity of the hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\theta }} = 1$$ is greater than $$2$$, then the length of its latus rectum lies in the interval :
A.
$$\left( {3,\,\infty } \right)$$
B.
$$\left( {\frac{3}{2},\,2} \right]$$
C.
$$\left( {2,\,3} \right]$$
D.
$$\left( {1,\,\frac{3}{2}} \right]$$
Answer :
$$\left( {3,\,\infty } \right)$$
Solution :
$$\eqalign{
& \because {a^2} = {\cos ^2}\theta ,\,\,{b^2} = {\sin ^2}\theta \cr
& {\text{and }}e > 2 \Rightarrow {e^2} > 4\,\, \Rightarrow 1 + \frac{{{b^2}}}{{{a^2}}}\,\, \Rightarrow 4 \cr
& \Rightarrow 1 + {\tan ^2}\theta > 4 \cr
& \Rightarrow {\sec ^2}\theta > 4 \Rightarrow \theta \Rightarrow \in \left( {\frac{\pi }{3},\,\frac{\pi }{2}} \right) \cr
& {\text{Latus rectum,}} \cr
& LR = \frac{{2{b^2}}}{a} = \frac{{2\,{{\sin }^2}\theta }}{{\cos \,\theta }} = 2\left( {\sec \,\theta - \cos \,\theta } \right) \cr
& \Rightarrow \frac{{d\left( {LR} \right)}}{{d\theta }} = 2\left( {\sec \,\theta \,\tan \,\theta + \sin \,\theta } \right) > \forall \,\theta \, \in \left( {\frac{\pi }{3},\,\frac{\pi }{2}} \right) \cr
& \therefore \min \left( {LR} \right) = 2\left( {\sec \frac{\pi }{3} - \cos \frac{\pi }{3}} \right) = 2 \left( {2 - \frac{1}{2}} \right) = 3 \cr} $$
max $$\left( {LR} \right)$$ tends to infinity as $$\theta \to \frac{\pi }{2}$$
Hence, length of latus rectum lies in the interval $$\left( {3,\,\infty } \right).$$