Question

Inverse of the function $$f:R \to \left( { - \infty ,\,1} \right)$$    given by $$f\left( x \right) = 1 - {2^{ - x}},$$    is :

A. $$ - {\log _2}\left( {1 - x} \right)$$  
B. $$ - {\log _2}\left( {x} \right)$$
C. $$0$$
D. $$1$$
Answer :   $$ - {\log _2}\left( {1 - x} \right)$$
Solution :
$$\eqalign{ & {\text{Let }}y = 1 - {2^{ - x}} \cr & {\text{or }}{2^{ - x}} = 1 - y \cr & {\text{or }} - x = {\log _2}\left( {1 - y} \right) \cr & {\text{or }}{f^{ - 1}}\left( x \right) = g\left( x \right) = - {\log _2}\left( {1 - x} \right) \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section