Question

$$\int_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,x}}} $$    is equal to :

A. 2  
B. $$-2$$
C. $$\frac{1}{2}$$
D. $$ - \frac{1}{2}$$
Answer :   2
Solution :
$$\eqalign{ & I = \int_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{1}{2}{{\sec }^2}\frac{x}{2}dx} = \left[ {\tan \frac{x}{2}} \right]_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} \cr & = \tan \frac{{3\pi }}{8} - \tan \frac{\pi }{8} \cr & = \tan \left( {\frac{\pi }{2} - \frac{\pi }{8}} \right) - \tan \frac{\pi }{8} \cr & = \cot \frac{\pi }{8} - \tan \frac{\pi }{8} \cr & = \frac{{{{\cos }^2}\frac{\pi }{8} - {{\sin }^2}\frac{\pi }{8}}}{{\sin \frac{\pi }{8}.\cos \frac{\pi }{8}}} \cr & = \frac{{\cos \frac{\pi }{4}}}{{\frac{1}{2}\sin \frac{\pi }{4}}} \cr & = 2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section