Question

$$\int_{ - 2}^2 {\left| {1 - {x^2}} \right|dx} $$    is :

A. $$4$$  
B. $$2$$
C. $$ - 2$$
D. $$0$$
Answer :   $$4$$
Solution :
$$\eqalign{ & \left| {1 - {x^2}} \right|{\text{ is an even function}}{\text{.}} \cr & \therefore I = 2\int_0^2 {\left| {1 - {x^2}} \right|dx} \cr & \therefore I = 2\int_0^1 {\left( {1 - {x^2}} \right)dx} + 2\int_1^2 {\left( {{x^2} - 1} \right)dx} \cr & = 2.\left[ {x - \frac{{{x^3}}}{3}} \right]_0^1 + 2.\left[ {\frac{{{x^3}}}{3} - x} \right]_1^2 \cr & = 2\left\{ {\left( {1 - \frac{1}{3}} \right) - 0} \right\} + 2\left\{ {\left( {\frac{8}{3} - 2} \right) - \left( {\frac{1}{3} - 1} \right)} \right\} \cr & = \frac{4}{3} + \frac{8}{3} \cr & \,\,\,\,\,\,\,\,\,\, = 4 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section