Question

$$\int_{ - 1}^1 {\left( {x - \left[ {2x} \right]} \right)dx} $$    is equal to :

A. 1  
B. 0
C. 2
D. 4
Answer :   1
Solution :
$$\eqalign{ & I = \int_{ - 1}^1 {x\,dx} - \int_{ - 1}^1 {\left[ {2x} \right]dx} \cr & \,\,\,\,\, = \left[ {\frac{{{x^2}}}{2}} \right]_{ - 1}^1 - \left\{ {\int_{ - 1}^{ - \frac{1}{2}} {\left[ {2x} \right]dx} + \int_{ - \frac{1}{2}}^0 {\left[ {2x} \right]dx} + \int_0^{\frac{1}{2}} {\left[ {2x} \right]dx} + \int_{\frac{1}{2}}^1 {\left[ {2x} \right]dx} } \right\} \cr & \,\,\,\,\, = 0 - \left\{ {\int_{ - 1}^{ - \frac{1}{2}} { - 2\,dx} + \int_{ - \frac{1}{2}}^0 { - 1\,dx} + \int_0^{\frac{1}{2}} {0\,dx} + \int_{\frac{1}{2}}^1 {1\,dx} } \right\} \cr & \,\,\,\,\, = 2\left[ x \right]_{ - 1}^{ - \frac{1}{2}} - \left[ x \right]_{ - \frac{1}{2}}^0 - \left[ x \right]_{ - \frac{1}{2}}^1 \cr & \,\,\,\,\, = 2\left( { - \frac{1}{2} + 1} \right) + \left( {0 + \frac{1}{2}} \right) - \left( {1 - \frac{1}{2}} \right) \cr & \,\,\,\,\, = 1 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section