Question

$$\mathop {\lim }\limits_{n \to \infty } {\left\{ {\frac{{n!}}{{{{\left( {kn} \right)}^n}}}} \right\}^{\frac{1}{n}}},$$    where $$k \ne 0$$  is a constant and $$n\, \in \,N,$$   is equal to :

A. $$ke$$
B. $${k^{ - 1}}.e$$
C. $$k{e^{ - 1}}$$
D. $${k^{ - 1}}.{e^{ - 1}}$$  
Answer :   $${k^{ - 1}}.{e^{ - 1}}$$
Solution :
$$\eqalign{ & {\text{Limit}} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{k}{\left\{ {\frac{1}{n}.\frac{2}{n}.\frac{3}{n}......\frac{n}{n}} \right\}^{\frac{1}{n}}} \cr & = \frac{1}{k}{e^{\mathop {\lim }\limits_{n \to \infty } \,\frac{1}{n}\,\sum\limits_{r = 1}^n {\,\log \frac{r}{n}} }} \cr & = \frac{1}{k}{e^{\int_0^1 {\log \,x\,dx} }} \cr & = \frac{1}{k}{e^{\left[ {x\,\log \,x} \right]_0^1 - \int_0^1 {x.\frac{1}{x}dx} }} \cr & = \frac{1}{k}{e^{ - 1}} \cr & \left( {\because \mathop {\lim }\limits_{x \to 0} \,x\log \,x = \mathop {\lim }\limits_{x \to 0} \frac{{\log \,x}}{{\frac{1}{x}}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{x}}}{{ - \frac{1}{{{x^2}}}}} = \mathop {\lim }\limits_{x \to 0} \left( { - x} \right) = 0} \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section