Question

$$\mathop {\lim }\limits_{n \to \infty } \frac{{{2^k} + {4^k} + {6^k} + ..... + {{\left( {2n} \right)}^k}}}{{{n^{k + 1}}}},\,k \ne 1,$$         is equal to :

A. $${2^k}$$
B. $$\frac{{{2^k}}}{{k + 1}}$$  
C. $$\frac{1}{{k + 1}}$$
D. none of these
Answer :   $$\frac{{{2^k}}}{{k + 1}}$$
Solution :
$$\eqalign{ & {\text{Limit}} = \mathop {\lim }\limits_{n \to \infty } {2^k}.\frac{{{1^k} + {2^k} + {3^k} + ..... + {n^k}}}{{{n^{k + 1}}}} \cr & = {2^k}.\mathop {\lim }\limits_{n \to \infty } \sum {\frac{1}{n}} .{\left( {\frac{r}{n}} \right)^k} \cr & = {2^k}.\int_0^1 {{x^k}dx} \cr & = {2^k}.\left[ {\frac{{{x^{k + 1}}}}{{k + 1}}} \right]_0^1 \cr & = \frac{{{2^k}}}{{k + 1}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section