Question

In the expansion of $${\left( {x + \sqrt {{x^2} - 1} } \right)^6} + {\left( {x - \sqrt {{x^2} - 1} } \right)^6},$$       the number of terms is

A. 7
B. 14
C. 6
D. 4  
Answer :   4
Solution :
On expansion and simplification,
expression $$ = 2\left\{ {^6{C_0}{x^6} + {\,^6}{C_2}{x^4}\left( {{x^2} - 1} \right) + {\,^6}{C_4}{x^2}{{\left( {{x^2} - 1} \right)}^2} + {\,^6}{C_6}{{\left( {{x^2} - 1} \right)}^3}} \right\}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\left\{ {\left( {^6{C_0} + {\,^6}{C_2} + {\,^6}{C_4} + {\,^6}{C_6}} \right){x^6} + \left( {{ - ^6}{C_2} - {\,^6}{C_4} \times 2 - {\,^6}{C_6} \times 3} \right){x^4} + \left( {^6{C_4} + {\,^6}{C_6} \times 3} \right){x^2} - {\,^6}{C_6}} \right\}.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section