Question

In a $$\vartriangle ABC,A = {90^ \circ }.$$    Then $${\tan^{ - 1}}\frac{b}{{a + c}} + {\tan ^{ - 1}}\frac{c}{{a + b}}$$      is equal to

A. $$\frac{\pi }{4}$$  
B. $$\frac{\pi }{2}$$
C. $${\tan ^{ - 1}}\frac{a}{{b + c}}$$
D. None of these
Answer :   $$\frac{\pi }{4}$$
Solution :
$$\eqalign{ & {\tan ^{ - 1}}\left( {\frac{a}{{b + c}}} \right) + {\tan ^{ - 1}}\left( {\frac{b}{{c + a}}} \right) \cr & {\text{We know that }}{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x + y}}{{1 - xy}}} \right) \cr & {\text{Replace, }}x{\text{ by }}\frac{a}{{b + c}}{\text{ and }}y{\text{ by }}\frac{b}{{c + a}} \cr & = {\tan ^{ - 1}}\left( {\frac{{\frac{a}{{b + c}} + \frac{b}{{c + a}}}}{{1 - \frac{{ab}}{{\left( {b + c} \right)\left( {c + a} \right)}}}}} \right) \cr & = {\tan ^{ - 1}}\left( {\frac{{\frac{{ac + {a^2} + {b^2} + bc}}{{\left( {b + c} \right)\left( {c + a} \right)}}}}{{\frac{{\left( {b + c} \right)\left( {c + a} \right) - ab}}{{\left( {b + c} \right)\left( {c + a} \right)}}}}} \right) \cr & = {\tan ^{ - 1}}\left( {\frac{{\frac{{{a^2} + {b^2} + bc + ac}}{{\left( {b + c} \right)\left( {c + a} \right)}}}}{{\frac{{bc + {c^2} + ca}}{{\left( {b + c} \right)\left( {c + a} \right)}}}}} \right) \cr & = {\tan ^{ - 1}}\frac{{{a^2} + {b^2} + bc + ac}}{{bc + {c^2} + ca}} \cr & {\text{Given, }}\angle {\text{C = }}{90^ \circ } \Rightarrow {a^2} + {b^2} = {c^2} \cr & = {\tan ^{ - 1}}\frac{{{c^2} + bc + ac}}{{bc + {c^2} + ca}} \cr & = {\tan ^{ - 1}}1 \cr & = \frac{\pi }{4} \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section