Question

In a $$\vartriangle ABC,$$  the sides are in the ratio 4 : 5 : 6. The ratio of the circumradius and the inradius is

A. 8 : 7
B. 3 : 2
C. 7 : 3
D. 16 : 7  
Answer :   16 : 7
Solution :
Here, $$a = 4k, b = 5k, c = 6k.$$
$$\eqalign{ & \therefore \,\,s = \frac{{15k}}{2}. \cr & \therefore \,\,\vartriangle = \sqrt {\frac{{15k}}{2}\left( {\frac{{15k}}{2} - 4k} \right)\left( {\frac{{15k}}{2} - 5k} \right)\left( {\frac{{15k}}{2} - 6k} \right)} = \frac{{15\sqrt 7 }}{4}{k^2}. \cr & {\text{But }}\,R = \frac{{abc}}{{4\vartriangle }} = \frac{{4k \cdot 5k \cdot 6k}}{{15\sqrt 7 {k^2}}} = \frac{8}{{\sqrt 7 }}k \cr & {\text{and }}\,r = \frac{\vartriangle }{s} = \frac{{15\sqrt 7 }}{4}{k^2} \cdot \frac{2}{{15k}} = \frac{{\sqrt 7 }}{2}k. \cr & \therefore \,\,\frac{R}{r} = \frac{{\frac{{8k}}{{\sqrt 7 }}}}{{\frac{{\sqrt 7 k}}{2}}} = \frac{{16}}{7}. \cr} $$
Properties and Solutons of Triangle mcq solution image

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section