Question

In a $$\vartriangle ABC,$$  $$I$$ is the incentre. The ratio $$IA : IB : IC$$   is equal to

A. $${\text{cosec}}\frac{A}{2}:{\text{cosec}}\frac{B}{2}:{\text{cosec}}\frac{C}{2}$$  
B. $$\sin \frac{A}{2}:\sin \frac{B}{2}:\sin \frac{C}{2}$$
C. $$\sec \frac{A}{2}:\sec \frac{B}{2}:\sec \frac{C}{2}$$
D. None of these
Answer :   $${\text{cosec}}\frac{A}{2}:{\text{cosec}}\frac{B}{2}:{\text{cosec}}\frac{C}{2}$$
Solution :
Here, $$BD : DC = c : b.$$
But $$BD + DC = a;$$
$$\therefore \,\,BD = \frac{c}{{b + c}} \cdot a.$$
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & {\text{In}}\,\,\vartriangle ABD,\frac{{BD}}{{\sin \frac{A}{2}}} = \frac{{AD}}{{\sin B}} \cr & \therefore \,\,AD = \frac{{ca}}{{b + c}} \cdot \frac{{\sin B}}{{\sin \frac{A}{2}}} = \frac{{2\vartriangle }}{{b + c}}{\text{cosec}}\frac{A}{2}. \cr & {\text{Also, }}\frac{{AI}}{{ID}} = \frac{{AB}}{{BD}} = \frac{c}{{\frac{{ca}}{{\left( {b + c} \right)}}}} = \frac{{b + c}}{a} \cr & \Rightarrow \,\,AI = \frac{{b + c}}{{a + b + c}} \cdot AD = \frac{\vartriangle }{s}{\text{cosec}}\frac{A}{2}. \cr} $$
Similarly for $$BI$$  and $$CI.$$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section