Question

In a triangle the sum of two sides is $$x$$ and the product of the same sides is $$y.$$ If $${x^2} - {c^2} = y,$$   where $$c$$ is the third side of the triangle, then the ratio of the in radius to the circum-radius of the triangle is

A. $$\frac{{3y}}{{2x\left( {x + c} \right)}}$$
B. $$\frac{{3y}}{{2c\left( {x + c} \right)}}$$  
C. $$\frac{{3y}}{{4x\left( {x + c} \right)}}$$
D. $$\frac{{3y}}{{4c\left( {x + c} \right)}}$$
Answer :   $$\frac{{3y}}{{2c\left( {x + c} \right)}}$$
Solution :
Let two sides of $$\Delta $$ be $$a$$ and $$b.$$
Then $$a + b = x$$   and $$ab = y$$
Also given $${x^2} - {c^2} = y,$$   where $$c$$ is the third side of $$\Delta .$$
$$\eqalign{ & \Rightarrow \,\,{\left( {a + b} \right)^2} - {c^2} = ab \cr & \Rightarrow \,\,{a^2} + {b^2} - {c^2} = - ab \cr & \Rightarrow \,\,\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = - \frac{1}{2} \cr & \Rightarrow \,\,\cos c = - \frac{1}{2} \cr & \Rightarrow \,\,c = {120^ \circ } \cr} $$
$$\therefore \,\,\frac{r}{R} = \frac{\Delta }{s} \times \frac{{4\Delta }}{{abc}}$$     where $$\Delta =\,\,$$ area of triangle
$$\eqalign{ & \Rightarrow \,\,\frac{r}{R} = \frac{{4{\Delta ^2}}}{{\frac{{\left( {a + b + c} \right)}}{2}abc}} \cr & = \frac{{8 \times {{\left( {\frac{1}{2}ab\sin c} \right)}^2}}}{{\left( {a + b + c} \right)abc}} \cr & \Rightarrow \,\,\frac{{2{a^2}{b^2}{{\sin }^2}{{120}^ \circ }}}{{\left( {a + b + c} \right)abc}} \cr & = \frac{{2ab \times \frac{3}{4}}}{{\left( {x + c} \right)c}} \cr & = \frac{{3y}}{{2c\left( {x + c} \right)}} \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section