Question

In a triangle $$ABC, \sin A - \cos B = \cos C,$$      then what is $$B$$ equal to ?

A. $$\pi$$
B. $$\frac{\pi }{3}$$
C. $$\frac{\pi }{2}$$  
D. $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{2}$$
Solution :
$$\eqalign{ & {\text{In a}}\,\Delta ABC,{\text{we have}} \cr & \sin A - \cos B = \cos C \cr & \Rightarrow \sin A = \cos B + \cos C \cr & \Rightarrow 2\sin \frac{A}{2} \cdot \cos \frac{A}{2} \cr & = 2\cos \left( {\frac{{B + C}}{2}} \right) \cdot \cos \left( {\frac{{B - C}}{2}} \right)\,\,\,\left[ {\because \sin 2A = 2\sin A \cdot \cos A} \right] \cr & {\text{and}}\,\,\cos B + \cos C = 2\cos \left( {\frac{{B + C}}{2}} \right) \cdot \cos \left( {\frac{{B - C}}{2}} \right) \cr & \Rightarrow 2\sin \frac{A}{2} \cdot \cos \frac{A}{2} = 2\cos \left( {{{90}^ \circ } - \frac{A}{2}} \right) \cdot \cos \left( {\frac{{B - C}}{2}} \right) \cr & \left[ {\because A + B + C = {{180}^ \circ } \Rightarrow \left( {\frac{{B + C}}{2}} \right) = {{90}^ \circ } - \frac{A}{2}} \right] \cr & \Rightarrow 2\sin \frac{A}{2} \cdot \cos \frac{A}{2} = 2\sin \frac{A}{2} \cdot \cos \left( {\frac{{B - C}}{2}} \right)\,\,\left[ {\because \cos \left( {{{90}^ \circ } - \theta } \right) = \sin \theta } \right] \cr & \Rightarrow \cos \frac{A}{2} = \cos \left( {\frac{{B - C}}{2}} \right) \cr & \Rightarrow \frac{A}{2} = \frac{{B - C}}{2} \cr & \Rightarrow A + C = B\,\,\,.....\left( {\text{i}} \right) \cr & {\text{Also}},A + C = {180^ \circ } - B\,\,\,.....\left( {{\text{ii}}} \right) \cr & {\text{So}},{180^ \circ } - B = B \cr & \Rightarrow 2B = {180^ \circ }\,\,\,\therefore B = {90^ \circ } \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section