Question
In a triangle $$ABC,$$ if $$A = {\tan ^{ - 1}}2$$ and $$B = {\tan ^{ - 1}}3,$$ then $$C$$ is equal to
A.
$$\frac{\pi }{3}$$
B.
$$\frac{\pi }{4}$$
C.
$$\frac{\pi }{6}$$
D.
$$\frac{\pi }{2}$$
Answer :
$$\frac{\pi }{4}$$
Solution :
$$\eqalign{
& {\text{We have, }}A = {\tan ^{ - 1}}2 \cr
& \Rightarrow \tan A = 2\,{\text{and}}\,B = {\tan ^{ - 1}}3 \cr
& \Rightarrow \tan B = 3. \cr
& {\text{Since, }}A,B,C{\text{ are angles of a triangle}} \cr
& \therefore A + B + C = \pi \cr
& \Rightarrow C = \pi - \left( {A + B} \right)\,\,\,.....\left( 1 \right) \cr
& {\text{Now}},A + B = {\tan ^{ - 1}}2 + {\tan ^{ - 1}}3 \cr
& = \pi + {\tan ^{ - 1}}\left( {\frac{{2 + 3}}{{1 - 2 \cdot 3}}} \right)\,\left[ {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = \pi + {{\tan }^{ - 1}}\frac{{x + y}}{{1 - xy}}} \right] \cr
& = \pi + {\tan ^{ - 1}}\left( { - 1} \right) = \pi - {\tan ^{ - 1}}\left( { - 1} \right) \cr
& = \pi - \frac{\pi }{4} = \frac{{3\pi }}{4} \cr
& \therefore {\text{from}}\,\left( 1 \right),C = \pi - \frac{{3\pi }}{4} = \frac{\pi }{4}. \cr} $$