Question

In a triangle $$ABC,$$  if $$A = {\tan ^{ - 1}}2$$   and $$B = {\tan ^{ - 1}}3,$$   then $$C$$ is equal to

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{4}$$  
C. $$\frac{\pi }{6}$$
D. $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{4}$$
Solution :
$$\eqalign{ & {\text{We have, }}A = {\tan ^{ - 1}}2 \cr & \Rightarrow \tan A = 2\,{\text{and}}\,B = {\tan ^{ - 1}}3 \cr & \Rightarrow \tan B = 3. \cr & {\text{Since, }}A,B,C{\text{ are angles of a triangle}} \cr & \therefore A + B + C = \pi \cr & \Rightarrow C = \pi - \left( {A + B} \right)\,\,\,.....\left( 1 \right) \cr & {\text{Now}},A + B = {\tan ^{ - 1}}2 + {\tan ^{ - 1}}3 \cr & = \pi + {\tan ^{ - 1}}\left( {\frac{{2 + 3}}{{1 - 2 \cdot 3}}} \right)\,\left[ {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = \pi + {{\tan }^{ - 1}}\frac{{x + y}}{{1 - xy}}} \right] \cr & = \pi + {\tan ^{ - 1}}\left( { - 1} \right) = \pi - {\tan ^{ - 1}}\left( { - 1} \right) \cr & = \pi - \frac{\pi }{4} = \frac{{3\pi }}{4} \cr & \therefore {\text{from}}\,\left( 1 \right),C = \pi - \frac{{3\pi }}{4} = \frac{\pi }{4}. \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section