Solution :
A selection of four vertices of the polygon gives an interior intersection.

∴ the number of sides $$= n$$
$$\eqalign{
& \Rightarrow \,{\,^n}{C_4} = 70 \cr
& \Rightarrow \,\,n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 24 \times 70 = 8 \times 7 \times 6 \times 5 \cr
& \therefore \,\,n = 8 \cr} $$
∴ the number of diagonals $$ = {\,^8}{C_2} - 8.$$